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Abstract
We discuss some basic properties of Lie group representations in rigged Hilbert
spaces. In particular, we show that a differentiable representation in a rigged
Hilbert space may be obtained as the projective limit of a family of continuous
representations in a nested scale of Hilbert spaces. We also construct a couple
of examples illustrative of the key features of group representations in rigged
Hilbert spaces. Finally, we establish a simple criterion for the integrability of
an operator Lie algebra in a rigged Hilbert space.

PACS numbers: 02.20.−a, 02.30.Sa

1. Introduction

In this paper we undertake a study of differentiable representations of finite dimensional Lie
groups in rigged Hilbert spaces (RHS). Since symmetry transformations on physical systems
often constitute such Lie groups, these representations may prove to be an integral component
of the relatively new rigged Hilbert space formulation of quantum physics [1–5]. The inceptive
motivation for introducing RHS in quantum mechanics, especially in [1–3], was to provide
Dirac’s bra and ket formalism, already a well established calculational tool, with a proper
mathematical content. It was later realized [4–7] that the mathematical structure of RHS
contains a certain suppleness that is well suited for a systematic study of scattering and decay
phenomena. During about the past two decades, investigations have continued into various
aspects of the quantum theory of scattering and decay in the framework of RHS. Perhaps the
most significant of these developments is the finding that in a suitably constructed RHS, the
fundamental dynamical equation of Schrödinger ih̄ ∂ψ

∂t
= Hψ can be integrated to obtain a

Hamiltonian generated semigroup for the time evolution of the physical system [4, 5, 8]. This
and certain other features of the theory show that the RHS formulation of quantum physics
deviates from the orthodox Hilbert space theory in significant ways. They are also indicative
of the above mentioned flexibility of the structure of RHS mathematics.
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However, although the semigroup time evolution in RHS has been studied extensively [8]
and often emphasized, a systematic study of representations of Lie groups in RHS has not
been carried out in a general setting. Certain fundamental properties such representations
must possess, as well as their physical content, have been discussed in [3, 10]. Even in these
works, some of the most natural questions to address, such as obtaining an RHS representation
of a Lie group from a given Hilbert space representation and/or from a given Lie algebra
representation, have not been undertaken.

Apart from the rather obvious need as a component of the general RHS formulation of
quantum mechanics, such a study of Lie group representations in RHS is also motivated by
certain recent applications of the formalism to relativistic resonances and unstable particles [9].
These works develop a characterization of relativistic resonances and unstable particles by
way of certain representations of a particular subsemigroup of the Poincaré group. The
relevant subsemigroup, named the Poincaré semigroup [9], is in fact the semidirect product
of the homogeneous Lorentz group with the semigroup of space–time translations into the
forward light cone. The RHS representations of this subsemigroup can be characterized
by a spin value j and a complex square mass value SR , and consequently they can be
attributed a physical interpretation as representing resonances along the lines of Wigner’s
classic theory of the unitary representations of the Poincaré group for stable particles. These
RHS representations of the Poincaré semigroup have subtleties which are not present in either
the unitary representations in Hilbert spaces or the well understood RHS theory for the non-
relativistic case [8] where only a one-parameter semigroup is needed to describe the evolution
of the physical system. Many of the technical and theoretical issues appertaining to the RHS
representations of the multi-parameter Poincaré semigroup [9] are subsumed under the subject
of this paper. In the remainder of this introductory section we shall briefly state the questions
that we attempt to formulate and answer in this paper; in sections 2 and 3 we present our results.

Definition 1.1. A rigged Hilbert space consists of a triad of vector spaces

	 ⊂ H ⊂ 	× (1.1)

where

1. H is a Hilbert space
2. 	 is a dense subspace of H and it is endowed with a complete locally convex topology τ	

that is stronger than the H-topology
3. 	× is the space of continuous antilinear functionals on 	. It is complete in its weak∗

topology τ× and it contains H as a dense subspace.

It is preceptive that the topology of the space 	 be constructed so as to yield an algebra
A of quantum physical observables—defined at the outset as an algebra of endomorphisms on
a dense subspace D of H—continuous as mappings on 	. For an operator A of this algebra
(that is also self-adjoint, normal or unitary as an operator in H), the nuclear spectral theorem
of Gel’fand affirms the existence of generalized eigenvectors (i.e., eigenvectors of the dual
operator A× in 	×) with the corresponding eigenvalues ranging over the continuous (Hilbert
space) spectrum of A1.

Thus, with the aid of RHS, the continuous and point spectra of observables can be treated
on an equal footing. Further, the above set of eigenvectors constitute a basis for the space 	.
1 In Gel’fand’s proof of the theorem, the locally convex space 	 of definition 1.1 was required to be nuclear.
Therefore, rigged Hilbert spaces are customarily defined in quantum theory with the requirement that 	 be nuclear.
However, since this condition can be relaxed [3] and since the nuclearity of 	 is not needed for the purposes of this
paper (and thus our results have a slightly broader generality), we choose to define RHSs as in definition 1.1, without
demanding that 	 be nuclear (see also [11]).
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This is in fact the mathematical content of Dirac’s bra-and-ket formulation of quantum
mechanics.

Very often in practice, the above mentioned algebra of observables A (to be made
continuous on 	) arises as the associative algebra of an operator Lie algebra in H. Further,
this Lie algebra may be the differential dT (with respect to the norm topology of H) of a
continuous (often unitary) representation T in H of a Lie group G. As stated above, the
complete locally convex space 	 for an RHS may be constructed from an invariant dense
domain D for the associative algebra of dT so that every element of this algebra becomes
continuous as a mapping on 	.

We prove (proposition 2.1) that the natural question whether the Hilbert space
representation T (say, when restricted to 	) yields a representation of the group G in 	

is answerable in the affirmative, provided the invariant domain for the operator Lie algebra dT
is chosen so that it remains invariant also under the group representationT . Observe that this is
a natural and minimal requirement for a homomorphism to be defined on G by the composition
of the operators T |	 which denote the restriction of T to 	. Moreover, it will be seen that the
τ	-generators of the representation T |	 coincide with the τH-generators of T on the space 	.

In contrast, it may also be possible to construct the space 	 from a dense domain D
which remains invariant under the differential dT but not under the group representation T .
This leads to the interesting possibility that certain symmetries present in the Hilbert space
description of a quantum mechanical system need not be present in its RHS description. It
is this feature that has been exploited in the above mentioned RHS study of certain quantum
mechanical processes such as resonance scattering and decay, and in particular, the apparent
asymmetric, semigroup time evolution associated with these processes. However, we shall
not be concerned with these aspects of the RHS quantum theory in this paper.

Section 3 of this paper deals with the complementary question whether every
(differentiable) Lie group representation in the space	 of an RHS is necessarily obtained from
a (continuous) representation of the group in the central Hilbert space H. The starting point in
this case is a representation T of a certain Lie algebraG in a Hilbert spaceH. Unlike in section 2,
proposition 2.1, we will no longer assume that T is the differential dT of a continuous group
representation T in H. Instead, we will establish a simple criterion of determining if the given
Lie algebra representation T is the differential of a certain Lie group representation in 	.

2. Induction from Hilbert space representations

Definition 2.1. A continuous representation of a Lie group G on a topological vector space
� is a continuous mapping T : G × � → � , such that

1. for every g ∈ G, T (g) is a linear operator in �

2. for every ψ ∈ � and g1, g2 ∈ G, T (g1g2)ψ = T (g1)T (g2)ψ

Definition 2.2. A differentiable representation of a Lie groupG on a complete topological vec-
tor space� is a mappingT :G×� → � which fulfils all the requirements of definition 2.1 and
has the additional property that for any one-parameter subgroup {g(t)} ofG, limt→0

T (g(t))φ−φ

t

exists for all φ ∈ � (and, a fortiori, defines a continuous linear operator on �).

Definition 2.3. A continuous one-parameter group of operators T (t) in a locally convex
topological vector space � is said to be equicontinuous if for every continuous seminorm p

on � , there exists another, q , such that

p(T (t)φ) � q(φ) (2.1)

holds for all φ ∈ � and all t ∈ R.
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The one-parameter group is said to be locally equicontinuous if (2.1) holds for all t in
every compact subset of R.

LetG be a Lie group of dimension d < ∞, and G be its Lie algebra. Let T be a continuous
representation of G in a Hilbert space H, and let T be the differential of T evaluated at the
identity e of G, dT |e = T . It is well known that T furnishes a representation of G by (not
necessarily continuous) linear operators in H.

Proposition 2.1. Let G, G, T and T be as above. Let D be a dense subspace of H which
remains invariant under both T and T . Then there exists a rigged Hilbert space 	 ⊂ H ⊂ 	×

such that the restrictions T |	 yield a continuous representation of G in 	.
Furthermore, if D can be chosen so that it is complete under the projective topology τ	

((2.3) below), the representation T |	 of G is differentiable in 	. By duality, there also exists
a differentiable representation of G in 	×.

Proof. Let {xi}di=1 be a basis for G and let Xi be the restriction of the differential T (xi) to the
invariant domain D.

Construction of RHS

Define a family of scalar products on D by setting

(φ,ψ)n+1 =
d∑

i=1

(Xiφ,Xiψ)n + (φ,ψ)n n = 0, 1, 2, . . . , φ,ψ ∈ D (2.2)

where (φ,ψ)0 ≡ (φ,ψ), the scalar product which D inherits from H. Linearity of the Xi

then ensures that (φ,ψ)n is in fact a scalar product on D for every n.
With (2.2), we have on D the family of norms:

‖φ‖2
n+1 =

d∑
i=1

‖Xiφ‖2
n + ‖φ‖2

n. (2.3)

From (2.3), it is clear that

‖φ‖n � ‖φ‖n+1 and ‖Xiφ‖n � ‖φ‖n+1. (2.4)

Since the norms (2.3) are derived from the scalar products (2.2), the dense subspace D
can be completed with respect to each norm ‖.‖n to obtain a Hilbert space Hn. The relations
(2.4) then imply that the Hn form a nested scale

H ⊃ H1 ⊃ H2 ⊃ · · · (2.5)

and that the operators Xi , and therewith the algebra A spanned by them, extend to elements
of B(Hn+1,Hn), the space of bounded linear operators from Hn+1 into Hn.

Now, let 	 be defined by

	 =
⋂
n

Hn. (2.6)

It is clear that 	 is a Fréchet space2 which contains D. It is also easy to see that the topology
of 	 is independent of the basis chosen. 	 is dense in H, and thus we have the triplet

	 ⊂ H ⊂ 	× (2.7)
2 The topology of 	 induced by the countable family of norms (2.3) is equivalent to the topology induced by the

powers of the generalized Laplacian
(∑d

i=1 X
2
i + I

)n
, as considered in [12].
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where 	×, the anti-dual of 	, can be obtained as

	× =
⋃
n

Hn. (2.8)

Remark: It is not known to us if the space 	 is nuclear when it is constructed in the above
manner, i.e., under the projective topology from the differential of a continuous representation
of a finite dimensional but otherwise arbitrary Lie group in a Hilbert space. However, it is
known that nuclearity holds for τ	 for the unitary representations of the following classes of
Lie groups: semi-simple groups [12]; nilpotent groups [13]; semi-direct products of Abelian
groups with compact groups [13] and the Poincaré group. Thus for a large class of Lie groups,
our proposition 2.1 can be restated for a triad 	 ⊂ H ⊂ 	×, where 	 is a nuclear space.

Restriction of T to 	

From the H-continuity of T (g), we have, for all ψ ∈ H,

‖T (g)ψ‖ � ω(g)‖ψ‖ (2.9)

where ω(g) is a positive constant which may depend on the group element g. An important
property of the representation T is that it is locally equicontinuous, a consequence of the
local equicontinuity of continuous, one-parameter groups in barrelled spaces [14]. That is, the
positive valued function ω on G is locally bounded.

Proposition 2.1 follows from (2.9) and the following operator valued formulation of the
well known Lie algebra inner automorphism Ad(ety) of G, defined by z → etyz e−ty , y, z ∈ G
(in any realization). Thus, for g = ey ,

gzg−1 = e(ady)z ≡ fzi(g
−1)xi (2.10)

where the functions fzi are locally analytic on G. The corresponding automorphism on G is
g etzg−1 = et (exp(ady)z), where g = ey and t , a real parameter. Then, for φ ∈ D,

d

dt
T (g)T (etz)T (g−1)φ = d

dt
T (et (exp(ady)z))φ. (2.11)

Now, since

lim
t→0

∣∣∣∣
∣∣∣∣T (g)T (etz)T (g−1)φ − φ

t
− T (g)T (z)T (g−1)φ

∣∣∣∣
∣∣∣∣

� ω(g) lim
t→0

∣∣∣∣
∣∣∣∣
(
T (etz) − I

t
− T (z)

)
T (g−1)φ

∣∣∣∣
∣∣∣∣ (2.12)

and D is invariant under T , we see that the left-hand side of (2.11), evaluated at t = 0, is
T (g)T (z)T (g−1). Thus,

T (g)T (z)T (g−1)φ = T ((eady)z)φ (2.13)

for φ ∈ D. But, by (2.10), for the basis elements Xi we then have

T (g)XiT (g−1)φ =
d∑

j=1

fij (g
−1)Xjφ. (2.14)

The real valued functions fij are continuous and locally analytic, and provide a (not
necessarily faithful) matrix representation of G. For the one-parameter subgroup {etxk }, it is
easy to see that the fij can be expanded as

fij (e−txk ) = δij + tcijk + · · · (2.15)
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where cijk are the structure constants of G. Furthermore, the fij and cijk fulfil the identities∑
k

cijkfkl(g
−1) =

∑
m,n

cmnlfim(g
−1)fjn(g

−1). (2.16)

The relations (2.9) and (2.14) show that for any φ ∈ D,

‖T (g)φ‖n � ω(g)


1 +

d∑
i,j=1

|fij (g)|



n

‖φ‖n. (2.17)

The proof of (2.17) is by induction. For n = 0, (2.17) is just (2.9), the assumed continuity of
T in H. If (2.17) holds for some n, then,

||T (g)φ||2n+1 =
d∑

i=1

||XiT (g)φ||2n + ||T (g)φ||2n

=
d∑

i=1

∣∣∣∣T (g)T (g−1)XiT (g)φ
∣∣∣∣2
n

+ ||T (g)φ||2n

� ω(g)2


1 +

d∑
i,j=1

|fij (g)|



2n (
d∑

k=1

∣∣∣∣T (g−1)XkT (g)φ
∣∣∣∣2
n

+ ||φ||2n
)

� ω(g)2


1 +

d∑
i,j=1

|fij (g)|



2n (
1 +

d∑
k,l=1

|fkl(g)|
)2

||φ||2n+1

� ω(g)2


1 +

d∑
i,j=1

|fij (g)|



2n+2

||φ||2n+1 (2.18)

where the inequalities (2.4) are used in the last step. Thus, we have (2.17).
The relation (2.17) gives the continuity of the operators T (g), g ∈ G, (when restricted to

the dense domain D) with respect to the Fréchet topology given by (2.2) or (2.3). It is also
fairly straightforward to establish the continuity of the mapping G → T (G) in this topology
on D. To that end, for φ ∈ D,

‖T (g)φ − φ‖2
n+1 =

d∑
i=1

‖XiT (g)φ − Xiφ‖2
n + ‖T (g)φ − φ‖2

n. (2.19)

Then, since

‖XiT (g)φ − Xiφ‖n =
∥∥∥∥∥∥T (g)

d∑
i,j=1

fij (g)Xjφ − Xiφ

∥∥∥∥∥∥
n

� ω(g)


1 +

∣∣∣∣∣∣
d∑

i,j=1

fij (g)

∣∣∣∣∣∣



n ∥∥∥∥∥∥
d∑

i,j=1

fij (g)Xjφ − Xiφ

∥∥∥∥∥∥
n

+ ‖T (g)Xiφ − Xiφ‖n

(2.20)

and since from (2.15), limg→e fij (g
−1) = δij , the continuity limt→0 ‖T (etx)φ − φ‖n = 0

implies

lim
t→0

‖T (etx)φ − φ‖n+1 = 0. (2.21)
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Since D is dense in each Hilbert space Hn of the nested scale (2.5), linearity of the operators
T (g) permits the inequalities (2.17) and (2.21) to be extended to the whole of Hn. That is, the
representation T |D extends from D to a continuous representation of G in each of the Hilbert
spaces Hn of (2.5).

Since 	 = ⋂∞
n=0 Hn, the relations (2.17) and (2.21) can be extended to the space 	.

Therewith we conclude that the restrictions T (g)|	 to the space 	 yield a continuous (with
respect to the 	-topology (2.3)) representation of G on 	.

It remains to prove that this representation on 	 is differentiable, i.e., for any φ ∈ 	 and
x ∈ G, limt→0

T (etx)−I

t
φ exists. We shall shortly see that the equality

lim
t→0

∥∥∥∥T (etx) − I

t
φ − T (x)φ

∥∥∥∥
n

= 0 (2.22)

can be easily obtained by induction so long as φ is restricted to the dense domain D. However,
since the mapping G → T (G) is not linear, we cannot necessarily extend (2.22) to the whole
of 	.

At this point we remark that a result of Roberts, proposition 13 in [1], leads to the
conclusion that the invariant domain D is complete under the projective topology when D is
taken to be the maximal invariant domain for the operator Lie algebra T (G). This domain is
also invariant under the operator group T (G). Thus, for such D, (2.22) holds for all φ ∈ 	,
and we have a differentiable representation of G on 	.

To prove (2.22), notice first that for n = 0 the equation just expresses that differentiability
of φ in H-topology, and thus the equation is true for all φ ∈ D by the definition of D. Next, if
(2.22) is true for some n, then

lim
t→0

∥∥∥∥T (etxi ) − I

t
φ − T (xi)φ

∥∥∥∥
2

n+1
= lim

t→0


 d∑

j=1

∥∥∥∥Xj

(
T (etxi ) − I

t
φ − Xiφ

)∥∥∥∥
2

n

+

∥∥∥∥T (etxi ) − I

t
φ − Xiφ

∥∥∥∥
2

n


 . (2.23)

Since (2.22) is assumed to be true for n, the last term vanishes. Also,∥∥∥∥Xj

(
T (etxi ) − I

t
− Xi

)
φ

∥∥∥∥
n

=
∥∥∥∥
∑

k fjk(e
txi )T (etxi )Xkφ − Xjφ

t
− XjXiφ

∥∥∥∥
n

�
∥∥∥∥fjj (etxi )T (etxi )Xjφ − Xjφ

t
− XiXjφ

∥∥∥∥
n

+

∥∥∥∥∥
∑

k �=j

(
fjk(etxi )T (etxi )Xkφ − tcjikXkφ

)
t

∥∥∥∥∥
n

. (2.24)

The invariance of D under Xk and the expansion (2.15) of the fij show that the right-hand
side of (2.24) vanishes when t → 0. That is, the right-hand side of (2.23) tends to zero. This
proves (2.22) for every basis element xi of G. The general case easily follows.

The existence of a differentiable representation of G in 	× easily follows from the
treatment in section 2.3.

This concludes the proof of proposition 2.1.

Proposition 2.1 thus shows that, starting from a continuous representation of a finite
dimensional Lie group in a Hilbert space H, a rigged Hilbert space 	 ⊂ H ⊂ 	× can
be constructed so that there exists a differentiable representation of the group in 	. The
construction begins with identifying the maximal invariant domain for the operator Lie algebra
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in H. In view of the remark following (2.8), for unitary representations of a large class of Lie
groups we can construct the triad 	 ⊂ H ⊂ 	× subject to the more restrictive condition that
	 be a nuclear space.

In the remainder of this section we shall investigate some secondary aspects of such
representations in 	 and present a couple of simple examples illustrating these features.

2.1. One-parameter subgroups in 	

Proposition 2.1 asserts that the differentiable representation T	 of a finite dimensional Lie
group G, obtained from its continuous Hilbert space representation T , is precisely the
projective limit of a family of continuous representations in the nested scale of Hilbert spaces
Hn in (2.5). That is, the representation T	 in 	 extends to a continuous representation
Tn (T0 = T ) ofG inHn for n= 0, 1, 2, . . . .The generatorsXi,n of the one-parameter subgroups
Tn(etxi ) are the extensions to Hn by closure, with respect to the norm topology ‖ · ‖n, of the
operators Xi in 	, and they furnish a representation of the Lie algebra G in some algebra
A(Dn) of endomorphisms on a dense subspace Dn of Hn. In fact, the invariant subspace D
from which the Fréchet space 	 was constructed can serve as Dn in each Hn.

This observation motivates us to consider the problem of integrating the Lie algebra
representation T (G) in 	 to the differentiable group representation T	 as, somewhat loosely
put, the projective limit of the integrability problem in the Hilbert spaces Hn. We shall take up
this integrability of an operator Lie algebra in 	 as a substantive problem below in section 3.
Here we will limit ourselves to the integrability conditions on a single element of T (G) into
a differentiable one-parameter group in 	. More precisely, the integrability of an element
X of the continuous Lie algebra representation T in 	 to a differentiable one-parameter
group can be treated as a repeated application of the classical Hille–Yosida [17, 18] theory of
one-parameter C0-groups in Banach spaces.

Consider again the case studied in proposition 2.1. Let us denote a typical one-parameter
subgroup of this differentiable representation by T	(t,X), where X is the generator of
T	(t,X). As seen from (2.17), the differentiable subgroup T	(t,X) extends to a C0-group
[17, 18] in each of the Hilbert spaces Hn. In Hn, this subgroup is generated by X̄n, the
extension to Hn, by closure, of the operator X in 	. If we denote this C0-group in Hn by
T (t, X̄n), then T	(t,X) in 	 is the projective limit of the C0-groups T (t, X̄n) in Hn.

Suppose T (t, X̄n) is of type ωn [17, 18], i.e.,

ωn = inf
t �=0

1

|t| ln‖T (t, X̄n)‖n = ± lim
t→±∞

1

|t| ln‖T (t, X̄n)‖n. (2.25)

The classical Hille–Yosida theory affirms the following relationships between the
resolvent R(λ, X̄n) of X̄n and the C0-group T (t, X̄n) generated by X̄n:

R(λ, X̄n)φ =
∫ ∞

0
dt e−λtT (t, X̄n)φ λ > ωn

(2.26)

R(λ, X̄n)φ = −
∫ 0

−∞
dt e−λtT (t, X̄n)φ λ < −ωn

T (t, X̄n)φ = lim
λ→∞

e−λt

∞∑
j=0

(λt)j

j !
(λR(λ, X̄n))

jφ t > 0

(2.27)

T (t, X̄n)φ = lim
λ→−∞

e−λt

∞∑
j=0

(λt)j

j !
(λR(λ, X̄n))

jφ t < 0
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where all limits are with respect to the Hn-topology. Further, for some positive Mn and
βn > ωn, we have

‖(R(λ, X̄n))
p‖n � Mn(|λ| − βn)

−p (2.28)

for all λ > βn and p = 1, 2, 3, . . . . In fact, the relation (2.28) is a necessary and sufficient
requirement for the closed operator X̄n to generate the C0-group T (t, X̄n) in the Hilbert space
Hn.

Since the differentiable subgroup T	(t,X) in 	 is the projective limit of the continuous
groups T	(t, X̄n), we see that the continuous operator X generates a one-parameter group in
	 when its closure X̄n fulfils the relation (2.28) for all n = 0, 1, 2, . . . . That is, for the kind of
differentiable subgroup considered here, the problem of reconstructing the T	(t,X) in terms
of (the resolvent of ) X in 	 can be reduced to the corresponding problem in each of the Hn

in the nested scale of Hilbert spaces (2.5).
It is interesting at this point to ask if the subgroup T	(t,X) can be recovered from its

generatorX in	without appealing to the Banach space theory applied to the Hilbert spacesHn.
The theory of C0-groups in more general locally convex spaces has also been developed [18],
and the form of this general theory is similar to the Banach space theory when the group is
equicontinuous in the parameter. For such a C0-group in a locally convex space, the resolvent
operator of the generator can be obtained in much the same way as in (2.26) as the Laplace
transform of the group. The group, in turn, can be recovered from the resolvent by way of a
limiting process similar to (2.27). Of course the integrals and limit processes are now to be
defined with respect to the locally convex topology of the vector space.

Nevertheless, as evident from the example below, such global equicontinuity may prove
to be too strong a restriction for C0-groups in rigged Hilbert spaces. In such situations, the
resolvent operator R(λ,X) may fail to exist anywhere in the complex plane, and further, even
when it does exist for all large |λ|, the group may not be able to be constructed from it as in
(2.27)3.

One obvious condition under which the resolvent operatorR(λ,X) can acquire an integral
resolution of the kind (2.26) in 	 is

ω ≡ sup
n

ωn < ∞ (2.29)

where the ωn are defined as in (2.25) and |λ> |ω. However, even when the resolvent R(λ,X)

ofX is everywhere defined in the complex plane, it is not necessary that the subgroup T	(t,X)

can be recovered in terms of R(λ,X) by the limit process (2.27) (in the 	-topology). One
instance when this is possible is

Mn � 1 and β ≡ sup
n

βn < ∞ (2.30)

where Mn and βn are defined as in (2.28). This condition assures that the Hille–Yosida theory
for the C0-groups in locally convex spaces [18] can be applied. In other words, if the relations
(2.29) and (2.30) hold, the subgroup T	(t,X) can be recovered from the resolvent of its
generator by way of (2.27), defined now in 	 as a τ	-limit process.

2.2. Example

Define a multiplication in R
3 by

(ξ1, ξ2, ξ3)(ζ1, ζ2, ζ3) = (ξ1 + ζ1, ξ2 + ζ2, ξ3 + ζ3 + ξ1ζ2). (2.31)
3 As remarked earlier, one-parameter C0-groups in 	 are necessarily locally equicontinuous, and these groups have
been studied in the literature [14]. However, we shall not make use of the results of [14] as the structure of 	, defined
by (2.6), makes the case considerably simpler for one-parameter groups in rigged Hilbert spaces.
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Under this multiplication R
3 becomes a group, G, which has the set {(0, 0, ξ3)} as its centre.

The Lie algebra G of G is spanned by the elements

χ1 = (1, 0, 0) χ2 = (0, 1, 0) χ3 = (0, 0, 1) (2.32)

which fulfil the commutation relations

[χ1, χ2] = χ3 [χ1, χ3] = [χ2, χ3] = 0. (2.33)

These commutation relations can be realized in R
3 by the multiplication rule defined, for any

two elements χ = (α, β, γ ) and χ ′ = (a, b, c) of G, as

(α, β, γ )(a, b, c) = (0, 0, αb). (2.34)

Thus, the basis elements (2.32) fulfil the relations

χiχj = δ1i δ2jχ3. (2.35)

Notice that under the product rule (2.34), the Lie algebra G becomes an associative algebra.
This associative algebra can be made into an operator algebra on R

3 by way of the definition,
for χ = (α, β, γ ) ∈ G and v = (x, y, z) ∈ R

3:

χv = (αy + γ z, βz, 0). (2.36)

The group G can be constructed by the exponentiation of G:

(ξ1, ξ2, ξ3) = e + ξ1χ1 + ξ2χ2 + ξ3χ3 (2.37)

where e, the identity element of G, is simply the origin (0, 0, 0).
A representation T of G in L2(R, µ), where µ is the Lebesgue measure, can be obtained

by setting

(T ((ξ1, ξ2, ξ3))f ) (x) = e−iξ3 e−ixξ2f (x + ξ1). (2.38)

It is easily seen that this is a continuous unitary representation of G.
The representation of G, given by the differential dT (with respect to the L2-topology), is

spanned by the operators

T (χ1) ≡ X1 = d

dx
T (χ2) ≡ X2 = −ix T (χ3) = X3 = iI. (2.39)

The task at hand is to construct a rigged Hilbert space so that a differentiable representation
of G may be induced in the space 	 from the continuous unitary representation (2.38) in L2.
To that end, as a common invariant domain for the operator Lie algebra (2.39) we choose
the Schwartz space S(R), the space of C∞-functions which decay at infinity faster than the
inverse of any polynomial. The definition (2.38) shows that S(R) is invariant under the group
representation T . We can now introduce the projective topology (2.3) on S(R) by means of
the generators X1, X2 and X3 of (2.39):

‖f ‖2
n+1 = ‖X1f ‖2

n + ‖X2f ‖2
n + ‖f ‖2

n f ∈ S(R). (2.40)

This topology on S(R) is equivalent to the more customary one defined by the norms
‖f ‖m,n = supx∈R|( dn

dxn x
mf
)
(x)|. Thus, S(R) is complete under the topology (2.40) and, in

fact, it is the projective limit of the scale of Hilbert spaces L2(R, µ) ⊃ H1 ⊃ H2 · · · where Hn

is obtained by completing S(R) with respect to the norm ‖ · ‖n. Therefore, we have the RHS

S(R) ⊂ L2(R, µ) ⊂ S(R)×. (2.41)

It is noteworthy that S(R) is a nuclear space.
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Proposition 2.1 shows that the restriction of the continuous unitary representation (2.38)
to the space S(R) yields therein a differentiable representation of the group (2.31). In fact,
with respect to the norms (2.40),

‖T (g)f ‖n �
(
1 + |ξ1|2 + |ξ2|2

)n/2 ‖f ‖n n = 0, 1, 2, . . . , f ∈ S(R) (2.42)

where g = (ξ1, ξ2, ξ3). Further,

lim
g→e

‖(T (g) − I)f ‖n = 0 n = 0, 1, 2, . . . , f ∈ S(R) (2.43)

and

lim
ξ1→0

∥∥∥∥
(
T ((ξ1, 0, 0)) − I

ξ1
− X1

)
f

∥∥∥∥
n

= 0

lim
ξ2→0

∥∥∥∥
(
T ((0, ξ2, 0)) − I

ξ2
− X2

)
f

∥∥∥∥
n

= 0 (2.44)

lim
ξ3→0

∥∥∥∥
(
T ((0, 0, ξ3)) − I

ξ3
− X3

)
f

∥∥∥∥
n

= 0 n = 0, 1, 2, . . . , f ∈ S(R).

As in the general case discussed in proposition 2.1, the proofs of (2.42)–(2.44) are by
induction. The explicit form of the factor

(
1 + |ξ1|2 + |ξ2|2

)n/2
in (2.42) follows from that of

the functions fij of (2.14), i.e., from T (g)X1T (g−1) = X1 + iξ2, T (g)X2T (g−1) = X2 + iξ1,
or fij (g) = δ1iδ1j + δ2iδ2j + δ3iδ3j + ξ2δ1iδ3j + ξ1δ2iδ3j . In fact, the f ’s are realized by the
(non-isomorphic) representation (ξ1, ξ2, ξ3) → (0, ξ1, ξ2) of G.

It is easily seen from (2.42) that the differentiable representationT extends to a continuous
representation Tn for everyn. The generators of the one-parameter subgroupsTn(ξ1) and Tn(ξ2)

are, respectively, the extensions to Hn, by closure, of X1 and X2. As before, let us denote
these two one-parameter subgroups in Hn by T (ξ1, X̄1,n) and T (ξ2, X̄2,n). The classical
Hille–Yosida theory can then be applied to recover these one-parameter subgroups from (the
resolvents of) their generators.

Consider the one-parameter subgroup T (ξ2, X̄2,n). From (2.42),

‖T (ξ2, X̄2,n)f ‖n �
(
1 + |ξ2|2

)n/2 ‖f ‖n f ∈ Hn. (2.45)

It is of type ωn = 0, i.e.,

ωn = inf
|ξ2|

1

|ξ2| ln‖T (ξ2, X̄2,n)‖n = 0 n = 0, 1, 2, . . . . (2.46)

Then, the resolvent operator R(λ, X̄2,n) can be obtained as, for f ∈ Hn,

R(λ, X̄2,n)f =
∫ ∞

0
dξ2e−λξ2T (ξ2, X̄2,n)f �(λ) > 0

(2.47)

R(λ, X̄2,n)f = −
∫ 0

−∞
dξ2e−λξ2T (ξ2, X̄2,n)f �(λ) < 0.

Also, the R(λ, X̄2,n) satisfy the equicontinuity condition∥∥(R(λ, X̄2,n))
p
∥∥
n

� (|λ| − n)−p (2.48)

for all λ with |�(λ)| > n. Therefore, according to the Hille–Yosida theory, the continuous
group T (ξ2, X̄2,n) can be recovered from the resolvent R(λ, X̄2,n) by means of the limiting
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process (2.27):

T (ξ2, X̄n)φ = lim
λ→∞

e−λξ2

∞∑
j=0

(λξ2)
j

j !
(λR(λ, X̄n))

jφ for ξ2 > 0

(2.49)

T (ξ2, X̄n)φ = lim
λ→−∞

e−λξ2

∞∑
j=0

(λξ2)
j

j !
(λR(λ, X̄n))

jφ for ξ2 < 0.

The differentiable one-parameter subgroup T (ξ2,X2) in 	 can then be obtained as the
projective limit of the continuous groups T (ξ2, X̄2,n) in Hn.

It is interesting to ask if the differentiable subgroup T (ξ2,X2) can be recovered from the
resolvent operator R(λ,X2) in 	, i.e., without appealing to the Banach space theory applied
to Hn. First note that since

ω = sup
n

ωn = 0 (2.50)

where the ωn are as in (2.46), the resolvent operator R(λ,X2) is defined everywhere on the
complex plane, except on the imaginary axis, and it is given by integrals of the kind (2.47).
The formal integrals∫ ∞

0
dξ2e−λξ2 e−ixξ2f (x) = 1

λ + ix
f (x) �(λ) > 0

(2.51)

−
∫ 0

−∞
dξ2e−λξ2e−ixξ2f (x) = 1

λ + ix
f (x) �(λ) < 0

which must coincide with the vector valued ones (which exist by the above Hille–Yosida
argument) show, for f ∈ S(R),

R(λ,X2)f (x) = 1

λ + ix
f (x) =

∫ ∞

0
dξ2e−λξ2T (ξ2,X2)f (x) �(λ) > 0

(2.52)

R(λ,X2)f (x) = 1

λ + ix
f (x) = −

∫ 0

−∞
dξ2e−λξ2T (ξ2,X2)f (x) �(λ) < 0

where the integrals are defined as the limit of a Riemann sum with respect to the Fréchet
topology (2.40) of S(R). The Hille–Yosida theory then implies that the operator R(λ,X2) is
an everywhere defined continuous operator in S(R). Alternatively, we could directly show,
by induction, that the linear operator defined by the first equality in (2.52) is such an operator:

‖R(λ,X2)f ‖n �
(

n∏
i=0

ci

)1/2

‖f ‖n (2.53)

where ci = 1 +
∏i−1

j=0 cj , i = 1, 2, . . . , n, and c0 = 1
|λ|2 .

The relation (2.53) also shows thatR(λ,X2) extends to an everywhere defined continuous
operator in Hn. This extension is really the resolvent operator R(λ, X̄2,n) of X̄2,n, the closure
of X2 in Hn-topology. Further, a direct computation shows∥∥(R(λ, X̄2,n))

p
∥∥
n

� (|λ| − n)−p (2.54)

for all |λ| > n and p = 1, 2, 3, . . . . This is exactly the relation (2.48), obtained there by
applying the Hille–Yosida theory to the C0-group T (ξ2, X̄2,n) in Hn.

The inf{|λ|}, for which (2.54) holds, strictly increases along the scale L2(R, µ) ⊃ H1 ⊃
H2 · · ·. This means that the upper bound (2.30) does not exist for the C0-group T (ξ2,X2)

in S(R). That is, there exist no β ∈ R such that e−βξ2T (ξ2,X2) is equicontinuous in S(R).
Therefore, although the resolvent operator R(λ,X2) exists for all λ with �(λ) �= 0, the
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C0-group T (ξ2,X2) cannot be recovered from it by means of a limit process akin to (2.27)
in the S(R)-topology. However, this recovery can be done for each T (ξ2, X̄2,n) in Hn, and
the differentiable group T (ξ2,X2) in S(R) can be obtained as the projective limit of the
T (ξ2, X̄2,n) thus recovered.

2.3. Differentiable representations of groups in 	×

Let T be a representation of a finite dimensional Lie group G in the space 	 of a rigged
Hilbert space 	 ⊂ H ⊂ 	×. Then, a representation V of G can be defined in 	× by way of
the identity

〈T (g)φ|F 〉 = 〈φ|V(g−1)F 〉 g ∈ G φ ∈ 	 F ∈ 	×. (2.55)

In other words,

V(g−1) = (T (g))× (2.56)

where the right-hand side denotes the operator dual to T (g). It is easy to verify that V
is a homomorphism on G. Furthermore, if T is a continuous representation, V will also
be a continuous representation with respect to the weak* topology τ× in 	×, and if T is
differentiable, V will also be differentiable. To see this, consider a one-parameter subgroup
{etx} in G and its representation T (t,X) in 	. As in (2.55), let us denote by V(t) the one-
parameter subgroup dual to T (t,X). If T is a differentiable representation, then for all φ ∈ 	,
limt→0

(T (t,X)−I )

t
φ = Xφ, and thus,

〈Xφ|F 〉 =
〈
lim
t→0

T (t,X) − I

t
φ, F

〉

= lim
t→0

〈
T (t,X) − I

t
φ, F

〉

= lim
t→0

〈
φ,

V(−t) − I

t
F

〉

= − lim
t→0

〈
φ,

V(t) − I

t
F

〉
(2.57)

where the second equality follows from the continuity of F as an antilinear functional on 	.
The last equality in (2.57) shows that the limt→0

V(t)−I

t
F exists everywhere in 	× with

respect to the weak* topology τ×. That is, the dual representation V , defined by (2.55), is
differentiable in 	× when T is differentiable in 	. Further, since the operator X× dual to X

is defined by 〈Xφ,F 〉 = 〈φ,X×F 〉, φ ∈ 	,F ∈ 	×, we see from (2.57) that the generator of
V(t) is −X×, and we may thus denote the one-parameter subgroup by V(t,−X×). It is evident
that the 	×-differential of V , evaluated at the identity element of G, furnishes a representation
V of the Lie algebra G, given explicitly by

V (x) = −(T (x))× x ∈ G (2.58)

where the × on the right-hand side denotes the dual operator to T (x). It is trivial to verify that
the mapping G →V (G) preserves the commutation relations [xi, xj ] = cijkxk in G.

2.4. Example

Proposition 2.1 shows that in a suitably constructed rigged Hilbert space 	 ⊂ H ⊂ 	×,
the restriction T	 of a continuous Lie group representation T in H furnishes a differentiable
representation of the group in 	. As seen in the previous section, by duality, there also exists a
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differentiable representation of the group in the dual space	×, given in particular by (T (G))×.
It is interesting to ask if every differentiable Lie group representation in 	 necessarily arises
as the restriction of a continuous representation of the group in the kernel Hilbert space H, or
equivalently, if every differentiable representation in 	 extends to a continuous representation
in H. In this section we will construct a variant of the example considered in section 2.2
that shows that a differentiable representation in the space 	 of an RHS need not extend to
a continuous representation in the Hilbert space H. However, this still leaves the case for
nuclear spaces unanswered because our 	 here is not a nuclear vector space.

Consider again the Lie algebra G spanned by the χ1, χ2 and χ3 of (2.32). The
corresponding Lie group G is generated by the exponentiation of G as in (2.37). We can
obtain a representation of G in the Hilbert space 92(C) of square summable complex sequences
φ = (φ1, φ2, φ3, . . .) by the direct sum of the operator algebra (2.36):

X1 =
∞∑
n=1

⊕nχ1 X2 =
∞∑
n=1

⊕nχ2 X3 =
∞∑
n=1

⊕n2χ3 (2.59)

i.e., X1φ = (φ2, 0, 0, 2φ5, 0, 0, 3φ8, 0, . . .), etc.
The operators (2.59) are unbounded on 92(C). As a common invariant dense domain for

the Xi , and therewith for the whole operator Lie algebra, we choose the subspace of rapidly
decreasing sequences, S = {

φ: φ ∈ 92(C); lim|m|→∞ mnφm = 0 for n = 0, 1, 2, . . .
}
.

To obtain an RHS, we introduce on S a locally convex topology by means of the scalar
products

(φ,ψ)n+1 =
3∑

i=1

(Xiφ,Xiψ)n + (φ,ψ)n (2.60)

where φ,ψ ∈ S and (φ,ψ)0 = (φ,ψ) = ∑∞
m=1 φmψ̄m, the inner product in 92(C). The

ensuing norms are

‖φ‖2
n+1 =

3∑
i=1

‖Xiφ‖2
n + ‖φ‖2

n. (2.61)

However, from (2.35) and the definition (2.59) of the Xi , we have

XiXj = δ1iδ2jX3. (2.62)

Thus, the set of norms (2.61) consists of only two elements:

‖φ‖2
0 = ‖φ‖2 =

∞∑
m=1

|φm|2

(2.63)

‖φ‖2
1 =

3∑
i=1

‖Xiφ‖2 + ‖φ‖2.

The Hilbert space H1 which results from the completion of S under the norm ‖ · ‖1, its dual
H×

1 and 92(C) form the RHS

	 ≡ H1 ⊂ 92(C) ⊂ H×
1 ≡ 	×. (2.64)

As mentioned earlier 	, being an infinite-dimensional Hilbert space, is not nuclear.
In much the same way as the Lie algebra of (2.33) integrates in R

3 to a representation
of the group G of (2.31), the operator Lie algebra spanned by the (2.59) integrates in 	 to a
differentiable representation of G:

T (ξ1, ξ2, ξ3) = I + ξ1X1 + ξ2X2 + ξ3X3. (2.65)
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That (2.65) is a homomorphismonG follows easily from (2.62) and (2.31). The continuity
of T (ξ1, ξ2, ξ3) as an operator in 	 for each (ξ1, ξ2, ξ3) ∈ G, as well as the differentiability
of the mapping G → T (G) in L(	), follows from the continuity of the operators Xi and the
defining relations (2.65).

Since theXi are not continuous in 92(C), (2.65) does not yield a continuous representation
of G in the central Hilbert space 92(C) of the triad (2.64). That is, the differentiable
representation (2.65) in 	 does not extend to a continuous representation in 92(C). In fact, the
operator Lie algebra spanned by the {Xi} of (2.59) cannot be the differential of any continuous
representation of G in 92(C), be it in the form (2.65) or not, because none of the basis elements
Xi is integrable in 92(C). To see this, first notice that on the common invariant domain S for
the Xi ,

1

λ2
(λ + Xi)(λ − Xi) = 1

λ2
(λ − Xi)(λ + Xi) = I λ �= 0. (2.66)

If the resolvent operatorR(λ,Xi) exists for some non-zero complex numberλ, it must coincide
with 1

λ2 (λ + Xi) on S. And for λ = 0, the range of (λ −Xi) is not dense in 92(C). Therefore,
the resolvent set of any of the Xi is empty, and the Hille–Yosida theory renders each Xi

non-integrable in 92(C) to a C0-group.

3. Integrability of operator Lie algebras in the RHS

Example 2.4 motivates us to consider representations of Lie groups in 	 independently of
possible corresponding representations of the group in H.

Therefore, let us suppose that T is a representation of a d-dimensional (d < ∞) Lie
algebra G in a complex Hilbert space H by linear operators defined over a common, invariant
dense domain D. Unlike in section 2, here we do not assume at the outset that T is the
differential dT of a continuous Lie group representation T in H.

If {xi}di=1 is some basis for G, then T (xi) furnishes a basis for T (G), which is a finite-
dimensional subspace of the algebra of endomorphisms on D. We shall adopt the notation
X = T (x), x ∈ G. Then, as in (2.2) and (2.3), we may use the operator algebra spanned by
{Xi}di=1 to define a locally convex topology on D leading to an RHS 	 ⊂ H ⊂ 	×, where
	 is the completion of D under the new locally convex topology. By construction, every X

in T (G) is continuous as an operator on 	. Thus, the mapping T furnishes a representation
of G by continuous operators on 	. We shall denote this operator Lie algebra in 	 also by
T (G), unless there is room for confusion. The problem we investigate in this section is the
integrability of T :

Definition 3.1. Let G be a connected and simply connected Lie group and G its Lie algebra.
Let T be a representation of G by (not necessarily continuous) linear operators on a complex,
locally convex, complete topological vector space � . T is said to be integrable if there exists
a representation T of G such that its differential dT , evaluated at the identity, contains T .

In other words, integrability of T means that for every x ∈ G, the operator X = T (x)

coincides on its domain of definition with the generator of the one-parameter subgroup
T (etx), t ∈ R. The representation T is generally taken to be continuous (definition 2.1).
The well known classical results [14, 17, 18] then affirm that the generator of the one-
parameter group T (etx) is a densely defined, closed operator in � . When these generators
are continuous, as seen in section 2, the group representation T is not simply continuous but
differentiable (definition 2.2).

The integrability in the sense of definition 3.1 can be viewed as an operator valued version
of Cartan’s classic theorem that every abstract Lie algebra is in fact the infinitesimal Lie algebra
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of a Lie group. Integrating operator Lie algebras has been a subject of continued interest
[15, 16, 19–22]. Among the earlier works are that of Nelson [15] and of Flato et al [16],
where primarily the integration of operator Lie algebras into unitary group representations in
Hilbert spaces is investigated. The problem is also studied for more general cases such as
Banach spaces and other locally convex spaces [19–22]. Some of these developments make
use of a good deal of geometric notions, whereas [15] and [16] mainly employ techniques of
functional analysis. Since the locally convex spaces in rigged Hilbert spaces have a particular
topological structure as the projective limit of a scale of Hilbert spaces (2.2), for the purposes
of this paper what is mostly relevant is the constructions in [15] and, in particular, [16] for
Hilbert spaces; our main technical result (theorem 3.1) is an immediate extension of [16].
Therefore, we shall not review here in detail the treatments of [19–22] which deal with various
aspects of the integrability problem in Banach and other locally convex spaces.

The centrally significant theoretical feature for the unitary representations is the existence
of a large class of analytic vectors for the representationT(G). In particular, Nelson proved [15]
that if the Laplacian: = −∑d

i=1 X
2
i with respect to some basis {Xi} ofT (G) is essentially self-

adjoint for a Lie algebra representation T by skew symmetric operators defined on a common
invariant dense domain in a Hilbert space, then T is integrable to a unique unitary representation
of G. A generalization of Nelson’s integrability criterion for unitary representations was
achieved by Flato et al (FSSS). They proved [16] that a Lie algebra isomorphism by skew
symmetric operators in a Hilbert space is integrable to a unique unitary representation of G if
there exists an invariant common dense domain of vectors analytic for some basis {Xi} of the
operator Lie algebra. That is, these vectors are assumed to be analytic for each Xi separately,
but not necessarily for the whole Lie algebra. Thus, the FSSS theory provides less stringent
integrability condition than Nelson’s.

Furthermore, the FSSS theory has the interesting feature that it can be naturally generalized
to continuous group representations in more general,complete locally convex spaces [16]. This
generalization is achieved, however, contingent to the assumption, which supplements the ones
on the existence of analytic vectors, that the closure of each basis element X̄i generates a one-
parameter subgroup. Although this requirement is redundant for skew symmetric operators in
Hilbert spaces, the integrability problem for an operator in a general locally convex space into
a continuous one-parameter group is considerably more complex, especially when the group
is not globally equicontinuous in the parameter. Such was the case considered in example 2.2.

In this section, we propose an adaptation of the FSSS theory for Lie group representations
in rigged Hilbert spaces. As mentioned above, for our purposes, the FSSS theory provides the
most convenient and immediate starting point. Suppose then an RHS 	 ⊂ H ⊂ 	× has been
built so as to yield an isomorphism T of a Lie algebra by continuous linear operators in 	.
Thus, the integrability of T amounts to finding a true anti-derivative for T , i.e., a group
representation T such that dT = T everywhere in 	. That is, the group representation T
is differentiable, not just continuous as considered in [16]. Our main technical result is that
the differentiability of T allows us to remove the assumption on the existence of analytic
vectors in the FSSS theory. This absence of the need for analytic vectors may make matters
considerably simpler in applications.

Theorem 3.1. Let 	 ⊂ H ⊂ 	× be a rigged Hilbert space and L(	), the space of continuous
linear operators in 	 equipped with the strong operator topology. Let G be a Lie algebra
of dimension d < ∞ and G the connected and simply connected Lie group with G as its
Lie algebra. Suppose T : G → T (G) ⊂ L(	) is an isomorphism on G, and suppose that
there exists a basis {xi}di=1 for G such that each Xi ≡ T (xi), i = 1, 2, 3, . . . , d, generates a
one-parameter group in 	. Then T is integrable to a unique differentiable representation of G.
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Before we present the proof of theorem 3.1, we shall consider some preliminary facts and
identities from Lie group theory and formulate their operator valued analogues in L(	).

3.1. Lie algebra preliminaries

Let G, G and {xi} be as defined in theorem 3.1. Then, a convex neighbourhood W of the
identity e of G can be chosen such that any g ∈ W can be written as

g = et1(g)x1 et2(g)x2 · · · etd (g)xd . (3.1)

The coordinate functions of the second kind

g → (t1(g), t2(g), . . . , td (g)) (3.2)

furnish a local chart over W . Since W is chosen to be convex, we have etxey ∈ W whenever
ey ∈ W , exey ∈ W and 0 � t � 1. Thus, for any ex ∈ W and 0 � t � 1,

etx = et1(t)x1 et2(t)x2 · · · etd (t)xd (3.3)

where we use the simpler notation ti (etx) → ti(t).
By applying the chain rule of differentiation on (3.3), we obtain the Lie algebra identities

x = dt1
dt

x1 + · · · +
dtd
dt

Int(t1x1) · · · Int(td−1xd−1)xd
(3.4)

x = Int(−tdxd) · · · Int(−t2x2)x1
dt1
dt

+ · · · + xd
dtd
dt

where Int(tx)y = etxye−tx , the inner automorphism on G induced by the elements of G. We
shall also make use of the well-known formula

etxye−tx = Int(tx)y =
∞∑
n=0

1

n!
(ad(tx))n y (3.5)

where (ad(x))ny = [x, (ad(x))n−1y] and (ad(x))0y = y. The series on the right-hand side of
(3.5) converges in the usual Euclidean topology of G.

Finally, for some x ∈ G and g ∈ W such that exg ∈ W , we have by the convexity of W ,
etxg ∈ W for 0 � t � 1. Thus, by (3.3),

etxg = eα1(t)x1 eα2(t)x2 · · · eαd(t)xd (3.6)

where the αi are analytic in t as they are simply given by the coordinate functions ti of (3.3)
as αi(t) = ti(etxg). This yields the identities [16],

x = dα1

dt
x1 + · · · +

dαd

dt
Int(α1x1) · · · Int(αd−1xd−1)xd

(3.7)
g−1xg = Int(−αdxd) · · · Int(−α2x2)x1

dα1

dt
+ · · · + xd

dαd

dt
.

3.2. L(	) analogues

Let us denote the image of Int(x)y under the isomorphism T by Int(X)Y , i.e., Int(X)Y ≡
T (Int(x)y).

Proposition 3.1.

(Int(tX)Y )φ = T (etxye−tx)φ =
∞∑
n=0

1

n!
(ad(tX))nYφ φ ∈ 	 (3.8)

where (ad(X))nYφ = X(ad(X))n−1Yφ − (ad(X))n−1YXφ.
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Proof. The first equality follows trivially from the first equality of (3.5). What needs to be
shown is the convergence of the series in L(	) and that its limit is Int(tX)Y . But this is trivial
from (3.5) and the continuity of the mapping T : G → L(	) in the strong operator topology
of L(	). �

Recall that the basis {xi} is chosen in G so that each Xi = T (xi) integrates to a one-
parameter group of operators in 	. Let T (t,Xi) be this group. Then, by the continuity of Xi ,

d

dt
T (t,Xi)φ = XiT (t,Xi)φ = T (t,Xi)Xiφ φ ∈ 	. (3.9)

Further, since 	 is a Fréchet space, T (t,Xi) is locally equicontinuous, i.e., for any compact
interval I ⊂ R and any n, there exists some m such that

‖T (t,Xi)φ‖n � ‖φ‖m t ∈ I φ ∈ 	. (3.10)

The relations (3.9) and (3.10) are among the standard results of the theory of one-parameter
groups in locally convex spaces [14].

Proposition 3.2.

d

dt
T (t,Xi)T (t,Xj )φ = T (t,Xi)(Xi + Xj)T (t,Xj )φ φ ∈ 	. (3.11)

Proof.∥∥∥∥ d

dt
T (t,Xi)T (t,Xj )φ − T (t,Xi)(Xi + Xj)T (t,Xj )φ

∥∥∥∥
n

= lim
s→0

∥∥∥∥T (t + s,Xi)T (t + s,Xj ) − T (t,Xi)T (t,Xj )

s
φ

−T (t,Xi)(Xi + Xj)T (t,Xj )φ

∥∥∥∥
n

� lim
s→0

∥∥∥∥T (t + s,Xi)
T (t + s,Xj ) − T (t,Xj )

s
− T (t + s,Xi)XjT (t,Xj )φ

∥∥∥∥
n

+ lim
s→0

∥∥T (t + s,Xi)XjT (t,Xj )φ − T (t,Xi)XjT (t,Xj )φ
∥∥
n

+ lim
s→0

∥∥∥∥T (t + s,Xi) − T (t,Xi)

s
T (t,Xj )φ − T (t,Xi)XiT (t,Xj )φ

∥∥∥∥
n

� lim
s→0

∥∥∥∥T (t + s,Xj ) − T (t,Xj )

s
− XjT (t,Xj )φ

∥∥∥∥
m

+ lim
s→0

∥∥T (t + s,Xi)XjT (t,Xj )φ − T (t,Xi)XjT (t,Xj )φ
∥∥
n

+ lim
s→0

∥∥∥∥T (t + s,Xi) − T (t,Xi)

s
T (t,Xj )φ − T (t,Xi)XiT (t,Xj )φ

∥∥∥∥
n

.

The first term in the last inequality follows from the local equicontinuity of T , (3.10). Since
each term on right-hand side tends to zero, we have (3.11). Notice that we needed only the
local equicontinuity of T (t,Xi) but not that of T (t,Xj ) for (3.11) to hold. �

Relations (3.8) and (3.11) can be combined to obtain an L(	) analogue of the Lie algebra
identity (3.5):
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Proposition 3.3. For any two basis elements Xi and Xj of T (G), the equality

T (t,Xi)XjT (−t, Xi)φ =
∞∑
n=0

1

n!
(ad(tXi))

n Xjφ (3.12)

holds for all φ ∈ 	. The series here is defined as in (3.8) in the strong operator topology.

Proof. The proposition is clearly true for t = 0. Next, by the continuity of the linear mapping
T : G → L(	), we have

d

dt
T
(
etxi xje−txi

)
φ = T

(
d

dt

(
etxi xje−txi

))
φ = T

(
etxi (ad(xi)xj )e−txi

)
φ. (3.13)

But, by (3.5),

etxi (adxi)xje−txi = (adxi)
(
etxi xje−txi

) = (adxi)
∞∑
n=0

1

n!
(ad(txi))

nxj . (3.14)

Thus, again by the continuity of T : G → L(	),

T
(
(ad(xi))

(
etxi xje−txi

))
φ = (adXi)

∞∑
n=0

1

n!
(ad(tXi))

nXjφ. (3.15)

Therefore, from (3.8), (3.13) and (3.15), we have

d

dt

∞∑
n=0

1

n!
(ad(tXi))

n Xjφ = (adXi)

∞∑
n=0

1

n!
(ad(tXi))

nXjφ φ ∈ 	. (3.16)

Now, from (3.11),

d

dt
T (t,Xi)XjT (−t, Xi)φ = T (t,Xi)(ad(Xi)Xj )T (−t, Xi)φ

= (ad(Xi))(T (t,Xi)XjT (−t, Xi))φ φ ∈ 	. (3.17)

Equalities (3.16) and (3.17) yield the L(	) valued differential equation

d

dt
u(t)φ = (ad(Xi))u(t)φ φ ∈ 	 (3.18)

where

u(t) = T (t,Xi)XjT (t,Xi) −
∞∑
n=0

1

n!
(ad(tXi))

n Xj . (3.19)

Thus u(0) = 0. We can employ a technique used in [16], equation (12), redefined here with
respect to the L(	) topology, to show that the solution u(t) to (3.18) is identically equal to
zero. To that end, consider the function v(s)φ = T (t − s,Xi)u(s)T (−t + s,Xi)φ, where u(s)
is as in (3.19).

From (3.8) and (3.10), u(s) is locally equicontinuous in s. Hence, by proposition 3.2,

dv(s)

ds
φ = −Xiv(s)φ + (adXi)v(s)φ + v(s)Xiφ = 0 (3.20)

i.e., v(s) is independent of s. Therefore,

u(t) = v(t) = v(0) = T (t,Xi)u(0)T (−t, Xi) = 0 (3.21)

and (3.19) gives (3.12). �
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In summary,

T (t,Xi)XjT (−t, Xi)φ = (Int(tXi)Xj )φ =
∞∑
n=0

tn

n!
(ad(Xi))

nXjφ. (3.22)

Remark. This equality is similar to equation (8) of [16]. However, our assumptions as well
as proof technique are different.

Further, from (3.4) and (3.7), we also have the L(	) valued the Lie algebra identities:

X = dt1
dt

X1 + · · · +
dtd
dt

Int(t1X1) · · · Int(td−1Xd−1)Xd

X = Int(−tdXd) · · · Int(−t2X2)X1
dt1
dt

+ · · · + Xd

dtd
dt

(3.23)

X = dα1

dt
X1 + · · · +

dαd

dt
Int(α1X1) · · · Int(αd−1Xd−1)Xd.

All the technical preliminaries are now in place for the proof of theorem 3.1.

3.3. Proof of theorem 3.1

Let W be as defined in section 3.1. Then, for any g ∈ W (i.e., of the form (3.1)) we define an
L(	) element T (g) by

T (g) = T (t1(g),X1)T (t2(g),X2) · · ·T (td(g),Xd). (3.24)

Being the composition of finitely many continuous linear operators, T (g) is a continuous
linear operator. Next, if x ∈ G is such that exg ∈ W , then for 0 � t � 1 by way of (3.3) and
(3.6),

T (etx) = T (t1(t),X1)T (t2(t),X2) · · · T (td (t),Xd)
(3.25)

T (etxg) = T (α1(t),X1)T (α2(t),X2) · · · T (αd(t),Xd).

Since each T (t,Xi) is locally equicontinuous, repeated applications of proposition 3.2
and proposition 3.3 ((3.22) in particular) on the first equality in (3.25) yield, for all φ ∈ 	,

d

dt
T (etx)φ =

(
dt1
dt

X1 + · · · +
dtd
dt

Int(t1X1) · · · Int(td−1Xd−1)Xd

)
T (etx)φ

d

dt
T (etx)φ = T (etx)

(
Int(−tdXd) · · · Int(−t2X2)X1

dt1
dt

+ · · · + Xd

dtd
dt

)
φ.

Thus, with (3.23), we have, for all φ ∈ 	,

d

dt
T (etx)φ = XT (etx)φ = T (etx)Xφ φ ∈ 	. (3.26)

This shows the differentiability of T (etx) in the neighbourhood W of the identity of G.
The same application on the second equality in (3.25), together with (3.23), gives

d

dt
T (etxg)φ = XT (etxg)φ φ ∈ 	 (3.27)

Next, for 0 � s � t � 1, the vector valued function

f (s)φ = T (esx)T (e(t−s)xg)φ (3.28)

can be differentiated, as in (3.11), because T (ssx) and T (e(t−s)xg) are both locally
equicontinuous in s. Thus,

d

ds
f (s)φ = XT (esx)T (e(t−s)xg)φ − T (esx)XT (e(t−s)xg)φ = 0 (3.29)
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That is, f (s)φ is independent of s, and so,

f (0)φ = T (etxg)φ = f (t)φ = T (etx)T (g)φ. (3.30)

This shows that the mapping W → T (g) defined by (3.24) is a homomorphism on W .
Recall that G was assumed to be the connected and simply connected Lie group with G

as its Lie algebra. Thus, an arbitrary element g of G can be written as a product of finitely
many elements of W . Consequently, the homomorphism T : W → L(	) given by (3.24)
can be extended from W to the entire group manifold, and the simply connectedness of G
assures that this extension is well defined for all g ∈ G. From (3.26) and the analyticity of the
multiplication in G, it follows that the above extension yields a differentiable representation
of G in 	. It is straightforward to verify, by way of (3.27), that the differential dT |e coincides
with the Lie algebra representation given at the outset, T .

This concludes the proof of theorem 3.1. �.

As an immediate consequence of the theorem, we have the following corollary:

Corollary 3.1. Under the assumptions of theorem 3.1, the dual Lie algebra representation in
	×, defined by T ×(x) = −(T (x))×, x ∈ G, is integrable.

Proof. If T is integrable to the differentiable representation T in 	, then as defined by (2.56),
there exists a differentiable representationV in	×. The weak* differential dV ofV is precisely
−(T (G))×. �

Example 2.4 led us to the conclusion that not every differentiable Lie group representation
in 	 comes about as the restriction of a continuous representation of the group in H. The
following proposition allows us to determine if such is the case for a given differentiable group
representation in 	 of an RHS.

Proposition 3.4. Let G andG be as in theorem 3.1, and let T be a differentiable representation
of G in the space 	 of a rigged Hilbert space 	 ⊂ H ⊂ 	×. Suppose there exists a basis
{Xi}di=1 for the operator Lie algebra T (G) such that each one-parameter subgroup T (t,Xi)

extends to a continuous one-parameter subgroup in H. Then the differentiable representation
T extends to a continuous representation of G in H.

Proof. Since the extension of the one-parameter subgroup T (t,Xi) in H is generated by the
H-closure X̄i of the generator Xi , let us denote it by T (t, X̄i). Now, for g ∈ W , where W is
as in the proof of theorem 3.1, define

TH(g)φ = T (t1(g), X̄i) · · · T (td (g), X̄d)φ φ ∈ H g ∈ W. (3.31)

It is clear that TH(g) is a continuous linear operator in H for each g ∈ W . Since TH(g)
coincides with T (g) of (3.24) on 	 and since 	 is dense in H, the mapping TH: W → B(H)

of (3.31) is a homomorphism on W . For x ∈ G such that etx ∈ W, 0 � t � 1, we have

TH(etx)φ = T (t1(t), X̄1)T (t2(t), X̄2) · · ·T (td (t), X̄d)φ φ ∈ H (3.32)

which shows that TH: W → B(H) is continuous on W . As in the proof of theorem 3.1, the
connectedness and simply connectedness of G permits a well defined extension of TH from
W to the entire G to yield a continuous representation of G in H. �

In view of proposition 2.1, T in	 is then the projective limit of continuous representations
of G in a scale of Hilbert spaces H ⊃ H1 ⊃ H2 · · ·.
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4. Concluding remarks

This paper studies some aspects of differentiable representations of finite-dimensional Lie
groups in rigged Hilbert spaces. In particular, it is shown (proposition 2.1) that, for a
suitably constructed rigged Hilbert space, such a representation can always be obtained from
a continuous representation of the group defined in a Hilbert space. Further, conditions are
specified (theorem 3.1) under which a given Lie algebra representation in a Hilbert space may
be integrated to an RHS representation of the corresponding Lie group. It is worthwhile to
point out that, in a suitable RHS 	 ⊂ H ⊂ 	×, such integrability may be possible in 	 even
when the given Hilbert space representation of the Lie algebra is not integrable in the Hilbert
space H itself (proposition 3.4).

Lie groups and Lie algebras play an essential role in many quantum mechanical theories.
Building a part of the theoretical framework for handling Lie group and algebra representations
in the RHS formulation of quantum mechanics is the primary goal of this paper. In addition, as
pointed out in the introduction, recent applications of the formalism to characterize relativistic
resonances and unstable particles involve intricacies of the representations of Lie groups
(and subsemigroups thereof) in RHS. In the developments achieved in [9], the space 	, and
therewith the RHS 	 ⊂ H ⊂ 	×, is built so that a differentiable representation of the Poincaré
semigroup (introduced in section 1) can be obtained in 	 from a unitary representation of the
Poincaré group in H. In particular, these constructions employ proposition 2.1 to obtain a
differentiable representation of the homogeneous Lorentz group in	. Further, the construction
of 	 is done so that the momentum operators Pµ do not generate one-parameter groups in 	,
and thus (theorem 3.1) the differentiable representation of the Poincaré semigroup in 	 does
not extend to a representation of the entire Poincaré group. Motivation for the mathematical
developments presented in this paper partly comes from the theory of relativistic resonances
and unstable particles proposed in [9].
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